IDENTIFYING NITROGEN SOURCES AND TRANSFORMATIONS IN URBANIZED HEADWATER STREAMS USING GEOCHEMICAL AND ISOTOPIC APPROACHES

ANDERSON, Catherine1, ANDERSEN, C. Brannon1, and LEWIS, Gregory P.2, (1) Earth and Environmental Sciences, Furman University, 3300 Poinsett Highway, Greenville, SC 29613, catherine.anderson@furman.edu, (2) Department of Biology, Furman University, 3300 Poinsett Highway, Greenville, SC 29613

Headwater streams comprise over seventy percent of the total stream length in the eastern United States. Increasingly, human transformation of land cover alters these headwaters. In particular, elevated nitrate concentrations in headwaters are associated with urbanization. Thus, it is important to determine the sources and transformations of nitrogen within urban watersheds. This study investigated headwaters within two urbanized watersheds in the Enoree River basin, South Carolina. Water samples were collected along finer-scale transects from the headwater springs to between 320 and 535 m downstream, as well as along watershed-scale transects from 4000 to 12000 m downstream. Urban storm runoff also was collected. Nitrate concentrations in urban storm runoff exceeded 1.4 mg N/L, while ammonium concentrations exceeded 0.63 mg N/L. Headwater nitrate concentrations ranged from 0.10 to 3.4 mg N/L, and ammonium concentrations ranged from below 0.01 to 0.24 mg N/L, both significantly higher than concentrations in nearby forest streams. Nitrate concentrations generally decreased with increasing distance downstream, with most changes occurring within the first 150 to 700 m. In slowly-flowing areas within 100 to 600 m from the headwater springs, nitrate and dissolved oxygen concentrations decreased and nitrite, ammonium, and dissolved organic carbon concentrations increased. Such stream sections may be hot spots for denitrification and other biogeochemical processes. Relatively constant concentrations of chloride, sodium, silicon, and magnesium along the stream reaches indicate a minimal role for dilution in altering nitrate concentrations. We will use paired isotopic analyses of δ15N and δ18O values for nitrate from 18 samples, in combination with chemical composition data, to constrain the sources and transformations of nitrate in runoff and in streams. Preliminary isotopic and chemical data suggest that nitrification of storm water within the shallow groundwater system is a major contributor of nitrate through the oxidation of ammonium. If denitrification plays a major role in nitrate removal within upper piedmont streams, generally increasing δ15N and δ18O values further downstream are expected.

Southeastern Section - 58th Annual Meeting (12-13 March 2009)
General Information for this Meeting

Session No. 16–Booth# 23
Undergraduate Research (Posters)
Hilton St. Petersburg Bayfront Hotel: Grand Bay Ballroom
8:30 AM-12:30 PM, Friday, 13 March 2009

Geological Society of America Abstracts with Programs, Vol. 41, No. 1, p. 43

© Copyright 2009 The Geological Society of America (GSA), all rights reserved. Permission is hereby granted to the author(s) of this abstract to reproduce and distribute it freely, for noncommercial purposes. Permission is hereby granted to any individual scientist to download a single copy of this electronic file and reproduce up to 20 paper copies for noncommercial purposes advancing science and education, including classroom use, providing all reproductions include the complete content shown here, including the author information. All other forms of reproduction and/or transmission are prohibited without written permission from GSA Copyright Permissions.