FLUVIAL GEOCHEMISTRY OF THE LITTLE RIVER WATERSHED, SOUTH CAROLINA

SARGENT, Kenneth A., Earth and Environmental Sciences, Furman Univ, Greenville, SC 29613, ken.sargent@furman.edu, DAVIS, Luke, Department of Geology and Geography, Georgia Southern Univ, Statesboro, GA 30460, ANDERSEN, C. Brannon, Dept. of Earth and Environmental Science, Furman Univ, Greenville, SC 29613, and LEWIS, Gregory P., Department of Biology, Furman Univ, Greenville, SC 29613

Little River, a 600 km² fifth-order watershed in the piedmont of South Carolina, drains various types of igneous and metamorphic rocks. Granites and biotite schists are the predominant rock types in the basin, but gabbros and amphibolites are also present. Weathering of bedrock is the primary source of solutes, although acid rain, agricultural runoff, and wastewater treatment plant effluent modify the chemical composition. In order to better understand the relationship between rock weathering and fluvial geochemistry, the chemical composition of river water was determined at 33 sample locations throughout the wet summer season of 2003. Similar to the Enoree River Basin studied in 1999 and 2000, silicate-weathering diagrams show that kaolinite is the main weathering product, but gibbsite and smectites may be present as well. This corresponds well with the mineral composition of the ultisols and minor alfisols found in the watershed. Typical of rivers in the piedmont, all samples were oversaturated with respect to quartz. Most sample localities exhibited the chemical signature of felsic rocks, but two localities show a higher Ca+Mg ratio, which may reflect the weathering of a gabbro. The Little River and Enoree River basins drain similar rock types and exhibit similar weathering products. Although located in a different climatic zone, these two basins show similar chemical compositions to those in the Orinoco River basin, which drains the Guyana Shield in South America. In the upper reaches of the main channel, the discharge of effluent from a wastewater treatment plant significantly modifies the chemical weathering signature. Downstream dilution reduces this effect.

Northeastern Section (39th Annual) and Southeastern Section (53rd Annual) Joint Meeting (March 25–27, 2004) General Information for this Meeting

Session No. 44--Booth# 58
From the Mountains to the Sea: Fluvial Processes in the Eastern United States (Posters)
Hilton McLean Tysons Corner: Ballrooms A and B
8:00 AM-12:00 PM, Friday, March 26, 2004


© Copyright 2004 The Geological Society of America (GSA), all rights reserved. Permission is hereby granted to the author(s) of this abstract to reproduce and distribute it freely, for noncommercial purposes. Permission is hereby granted to any individual scientist to download a single copy of this electronic file and reproduce up to 20 paper copies for noncommercial purposes advancing science and education, including classroom use, providing all reproductions include the complete content shown here, including the author information. All other forms of reproduction and/or transmittal are prohibited without written permission from GSA Copyright Permissions.